Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Inflamm Res ; 14: 2993-3013, 2021.
Article in English | MEDLINE | ID: covidwho-1315919

ABSTRACT

The looming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a long-lasting pandemic of coronavirus disease 2019 (COVID-19) around the globe with substantial morbidity and mortality. N-acetylcysteine, being a nutraceutical precursor of an important antioxidant glutathione, can perform several biological functions in mammals and microbes. It has consequently garnered a growing interest as a potential adjunctive therapy for coronavirus disease. Here, we review evidence concerning the effects of N-acetylcysteine in respiratory viral infections based on currently available in vitro, in vivo, and human clinical investigations. The repurposing of a known drug such as N-acetylcysteine may significantly hasten the deployment of a novel approach for COVID-19. Since the drug candidate has already been translated into the clinic for several decades, its established pharmacological properties and safety and side-effect profiles expedite preclinical and clinical assessment for the treatment of COVID-19. In vitro data have depicted that N-acetylcysteine increases antioxidant capacity, interferes with virus replication, and suppresses expression of pro-inflammatory cytokines in cells infected with influenza viruses or respiratory syncytial virus. Furthermore, findings from in vivo studies have displayed that, by virtue of immune modulation and anti-inflammatory mechanism, N-acetylcysteine reduces the mortality rate in influenza-infected mice animal models. The promising in vitro and in vivo results have prompted the initiation of human subject research for the treatment of COVID-19, including severe pneumonia and acute respiratory distress syndrome. Albeit some evidence of benefits has been observed in clinical outcomes of patients, precision nanoparticle design of N-acetylcysteine may allow for greater therapeutic efficacy.

2.
Viruses ; 13(5)2021 05 10.
Article in English | MEDLINE | ID: covidwho-1290361

ABSTRACT

Since the first report of a new pneumonia disease in December 2019 (Wuhan, China) the WHO reported more than 148 million confirmed cases and 3.1 million losses globally up to now. The causative agent of COVID-19 (SARS-CoV-2) has spread worldwide, resulting in a pandemic of unprecedented magnitude. To date, several clinically safe and efficient vaccines (e.g., Pfizer-BioNTech, Moderna, Johnson & Johnson, and AstraZeneca COVID-19 vaccines) as well as drugs for emergency use have been approved. However, increasing numbers of SARS-Cov-2 variants make it imminent to identify an alternative way to treat SARS-CoV-2 infections. A well-known strategy to identify molecules with inhibitory potential against SARS-CoV-2 proteins is repurposing clinically developed drugs, e.g., antiparasitic drugs. The results described in this study demonstrated the inhibitory potential of quinacrine and suramin against SARS-CoV-2 main protease (3CLpro). Quinacrine and suramin molecules presented a competitive and noncompetitive inhibition mode, respectively, with IC50 values in the low micromolar range. Surface plasmon resonance (SPR) experiments demonstrated that quinacrine and suramin alone possessed a moderate or weak affinity with SARS-CoV-2 3CLpro but suramin binding increased quinacrine interaction by around a factor of eight. Using docking and molecular dynamics simulations, we identified a possible binding mode and the amino acids involved in these interactions. Our results suggested that suramin, in combination with quinacrine, showed promising synergistic efficacy to inhibit SARS-CoV-2 3CLpro. We suppose that the identification of effective, synergistic drug combinations could lead to the design of better treatments for the COVID-19 disease and repurposable drug candidates offer fast therapeutic breakthroughs, mainly in a pandemic moment.


Subject(s)
Coronavirus 3C Proteases/drug effects , Quinacrine/pharmacology , Suramin/pharmacology , Antiviral Agents/pharmacology , COVID-19 Vaccines/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Cysteine Endopeptidases/metabolism , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/pharmacology , Quinacrine/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Suramin/metabolism , Viral Nonstructural Proteins , COVID-19 Drug Treatment
4.
Adv Biol Regul ; 77: 100739, 2020 08.
Article in English | MEDLINE | ID: covidwho-622213

ABSTRACT

The COVID-19 pandemic has put a serious strain on health treatments as well at the economies of many nations. Unfortunately, there is not currently available vaccine for SARS-Cov-2/COVID-19. Various types of patients have delayed treatment or even routine check-ups and we are adapting to a virtual world. In many cases, surgeries are delayed unless they are essential. This is also true with regards to cancer treatments and screening. Interestingly, some existing drugs and nutraceuticals have been screened for their effects on COVID-19. Certain FDA approved drugs, vitamin, natural products and trace minerals may be repurposed to treat or improve the prevention of COVID-19 infections and disease progression. This review article will summarize how the treatments of various cancer patients has changed during the COVID-19 era as well as discuss the promise of some existing drugs and other agents to be repurposed to treat this disease.


Subject(s)
Antineoplastic Agents/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Neoplasms/drug therapy , Neoplasms/epidemiology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Comorbidity , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Repositioning , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Hydroxychloroquine/therapeutic use , Neoplasms/immunology , Neoplasms/virology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction/genetics , Signal Transduction/immunology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Trace Elements/therapeutic use , Vitamins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL